A car is traveling at 25 m/s along the highway. All of sudden the car in front slams on the brakes.

The average person has a reaction time of 0.2 seconds. The maximum deceleration that can be applied is 5.0 m/s².

How much room does the car need to safely come to a stop?

Part 1: Uniform motion:
$$\vec{V} = \overrightarrow{Dd}$$

$$\vec{V} = \overrightarrow{Dd}$$

$$\vec{Dd} = \vec{V} \Delta t$$

$$= 25 \text{ m/s} (0.2 \text{ s})$$

$$= 5 \text{ m}$$

Part 2: Uniform acceleration (4 equations)

$$\frac{5a}{\sqrt{t^2 - 1}} = \frac{5a}{\sqrt{t^2 - 1}} = \frac{5a}{\sqrt{t^2 - 1}} = \frac{7a}{\sqrt{t^2 - 1}} = \frac{7a$$

$$\frac{2(-5m|s)^{2}}{2(-5m|s^{2})} = Dd$$

Total distance needed =