Conic Sections (Conics)

Goal:

- to become familiar with the basic conics
- to understand the equation of circles and ellipses centered at the origin

The study of conics involves geometric loci (singular: locus). A geometric locus is a set of points that share a property. The result is usually a shape we can recognize.

Conics are geometric loci that are found by intersecting a cone with a plane.

They are: circles, ellipses, parabolas and hyperbolas.

Since each conic section shares a property we are able to write an equation that represents it.

The equation for any circle centered at the origin is:

$$\int X_5 + A_5 = L_5$$

How far apart are two points on a circle centered at the origin, with a diameter of 20 units, if they have x=7

$$d = 2r = 20$$

$$r = 10$$

$$X^{2} + y^{2} = 10^{2}$$

$$X^{2} + y^{2} = 100$$

$$7^{2} + y^{2} = 100$$

$$49 + y^{2} = 100$$

$$y^{2} = 51$$

$$y = \pm \sqrt{51}$$

$$Q = 9_{2} - 9_{1} = \sqrt{51} - (-\sqrt{51})$$

$$= 2\sqrt{51}$$

Ellipse definition: A set of points, where the sum of distances to two fixed points, foci, is constant.

$$d(PF_1) + d(PF_2) = constant$$

$$F_1$$

$$F_2$$

The equation for any ellipse centered at the origin is:

$$\frac{C_{2}}{X_{2}} + C_{2} = 1$$

An ellipse can have a horizontal major axis:

Or it can have a vertical major axis:

Write the equation of an ellipse centred at the origin:

a) with focus at (0,3) and co-vertex at (4,0)

