While still on the top of the school (15 m high) a second egg is thrown straight upwards with an initial speed of 8.0 m/s.

a) What is the maximum height reached by the egg?

$$V_{i} = 8.0 \text{ m/s [up]}$$
 $V_{f}^{2} = V_{i}^{2} + 2 \text{ a Dd}$
 $V_$

b) How fast is the egg traveling when it strikes the ground?

$$V_{i} = 8.0 \text{ m/s} \text{ [up]}$$
 $V_{i} = 8.0 \text{ m/s} \text{ (down)}$
 $V_{i} = 9.8 \text{ m/s}^{2} \text{ (down)}$
 $V_{i} = 9.8 \text{ m/s}^{2} \text{ (down)}$
 $V_{i} = 9.8 \text{ m/s}^{2} \text{ (down)}$
 $V_{i} = 7.7 \text{ Not zero}$
 $V_{i} = 7.7 \text{ N$

c) How fast is the egg traveling as it passes the top of the school on the way down?

d) How long is the egg in the air?

Some helpful guidelines:

When an object is dropped...

$$V_i = \bigcirc$$

$$\Lambda^t \neq 0$$
 $\Lambda^t = \max \Lambda$

When an object is launched upwards and lands at the same height...

$$\Delta d = 0$$

When an object reaches it's maximum height...

$$v = 0$$