MECHANICAL ENERGY

Goal:

- to be familiar with types of energy
- to be able to calculate kinetic and potential energy

In physics, energy is...

WORK-ENERGY THEOREM:

$$M = \nabla \epsilon^{k}$$

For us three types of energy make up mechanical energy

KINETIC ENERGY: related to motion

GRAVITATIONAL POTENTIAL ENERGY: Stored energy

from force of gravity

ELASTIC POTENTIAL ENERGY: stored energy from elastic Forces (springs) From last year,

Kinetic Energy is ...

$$E_{k} = \frac{1}{2}mv^{2}$$

Determine the kinetic energy of a 625-kg roller coaster car that is moving with a speed of 18.3 m/s.

$$= 104 623 \text{ kg/m}/s^2 = 104 623 2$$

$$= 104 623 \text{ kg/m}/s^2 = 104 623 2$$

And

Gravitational Potential Energy is...

How high is a 20 kg mass if it has 1000 J of graviational potential energy?

$$1000J = 20 \text{kg}(9.8 \text{N/kg}) h$$

 $5.1 \text{J/N} = h$
 $h = 5.1 \text{ m}$

Another form of potential energy comes from springs (or other elastic objects).

Elastic potential energy is...

$$E_{e} = \frac{1}{2} F_{e} \Delta d$$

$$= \frac{1}{2} k \Delta x \Delta d$$

$$= \frac{1}{2} k \Delta x^{2}$$

$$E_{e} = \frac{1}{2} k \Delta x^{2}$$

What is the elastic potential energy stored in a spring whose force constant is 160 N/m when it is compressed 8.0 cm?

$$E_{c} = \frac{1}{2} (160 \text{ N/m}) (0.08 \text{ m})^{2}$$

$$= 0.512 \text{ N/m}$$

$$= 0.512 \text{ J}$$

A block with a mass of 2.5 kg is sliding across a frictionless surface at 3.0 m/s when it hits a stationary spring bumper, fixed at one end, whose force constant is 360 N/m. By what amount does the block compress the spring, before coming to rest?

Ek =
$$\frac{1}{2}mv^2$$

= $\frac{1}{2}(2.5 \text{ kg})(3.0 \text{ n/s})^2$

= 11.25 J \leftarrow Total Mechanical Energy

When block comes to

(Eg = 0 + Ee = 0)

rest Ek = 0, all the energy is transferred into Ee.

$$E_e = 11.25 \text{ J}$$

$$\frac{1}{2} \text{ k } \Delta \chi^2 = 11.25 \text{ J}$$

$$\frac{1}{2} \text{ (360 N/m) } \Delta \chi^2 = 11.25 \text{ J}$$

$$\Delta \chi = 0.25 \sqrt{3}/N/n$$

$$\Delta \chi = 0.25 \text{ M}$$

$$\Delta \chi = 0.25 \text{ M}$$

$$= \sqrt{m}$$

$$= \sqrt{m}$$

$$= \sqrt{m}$$