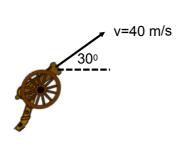

Projectile Motion Launched at an Angle

Goal:

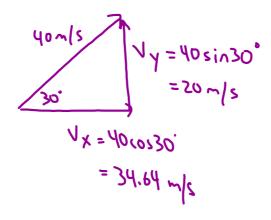
- to solve problems when objects are launched at angle


How far will the cannon ball land?

Here the initial velocity now has both a horizontal and vertical component. Each component is needed to solve the problem.

A cannon fires a shell with a speed of 40 m/s at an angle of 30°.

How far away does the shell land if...


a) it lands at the same height?

Vertical

Vi=20 m/s (up)

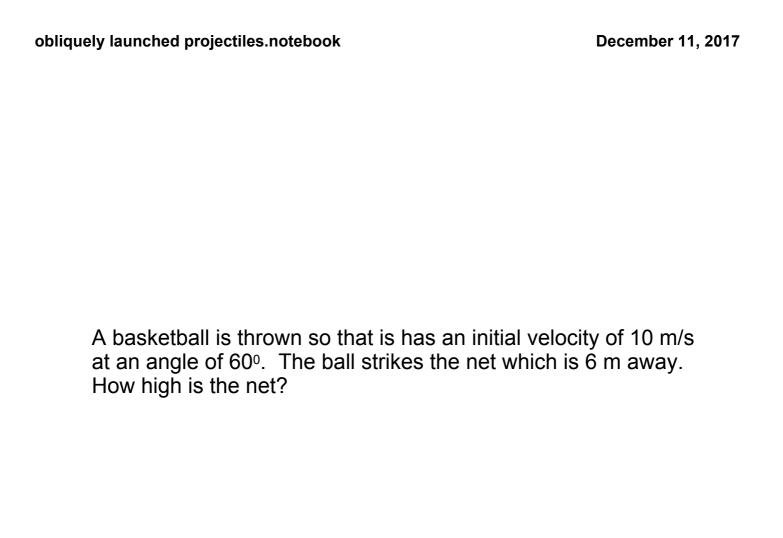
$$\alpha = 9.8 \text{ m/s}^2 \text{ (down)}$$
 $\Delta d = 0 \text{ (same height)}$
 $\Delta t = ?$

$$V = \frac{\Delta d}{\Delta t}$$

$$34.64 = \frac{\Delta d}{4.08}$$

$$34.64 = \frac{\Delta d}{4.08}$$

b) it lands 10 m below the launch height?


Vertical

$$V_1 = 20 \text{ m/s (up)}$$
 $\Delta d = V_1 \Delta t + \frac{1}{2} \alpha (\Delta t)^2$
 $\Delta d = 9.8 \text{ m/s}^2 (dcwn)$
 $-10 = 20\Delta t - 4.9\Delta t^2$
 $\Delta d = 10 \text{ m (down)}$
 $4.9 \Delta t^2 - 20\Delta t - 10 = 0$
 $\Delta t = ?$
 $\Delta t = 20 \pm \sqrt{(-20)^2 - 4(4.9)(-10)}$
 $2(4.9)$
 $\Delta t_1 = -0.45$
 $\Delta t_2 = 4.53$

Horizontal
$$\Delta t = 4.53 \text{ s} \qquad \Delta d = VAt$$

$$V = 34.64 \text{ (4.53)}$$

$$= 156.9 \text{ m}$$

Equations for projectile motion when $\Delta d_y = 0$

$$t = \frac{2v_0 \sin \theta}{g}$$

$$H = \frac{{v_0}^2 \sin^2 \theta}{2g}$$

$$R = \frac{{v_0}^2 \sin 2\theta}{g}$$

Firing a cannon